
Using CFD in the design environment

Principal Research Engineer Wolfson Unit MTIA

Using CFD in the design environment • Historical use North sails – production run use of CFD Track cycling – why CFD is no good • DES – the future ? Resources required

Historical use of CFD

• Origins

- NASA & Boeing 1960's
- 1st notable yacht use -Stars & Stripes '87
- Limits of computers

 Never enough !
 Current RANS models of a wing are 10⁷; DNS will require 10²⁰ (approx. 2080 if Moore's Law holds)

Historical use of CFD

Mathematical models

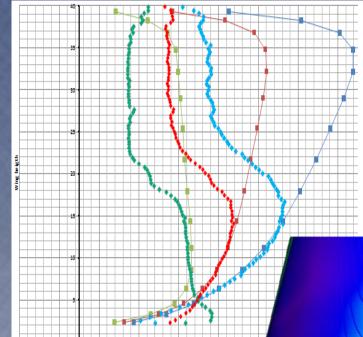
Potential flow (60's)
Euler (early 80's)
RANS (90's)
LES (research since 90's; design)

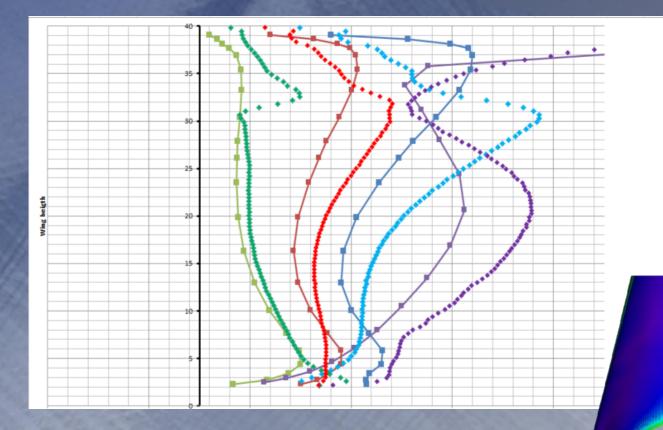
Modelling approaches

- · Panel codes
 - potential flow, no viscosity
- · RANS
 - empirical model to simulate viscosity via Reynolds stress.
- LES and beyond
 - Large Eddy Simulation, explicitly solves large eddies, uses models only at sub grid scale (SGS)

NOLOGY AND INDUSTRIAL AERODYNAMICS

Resources - codes


 Fully commercial · Up to date & QA but its going to cost • Black box Personal / in house full control & cheap but effort to keep up • Freeware / open source stronghold in academic community and possibly the long term future


Panel codes – the workhorse Attached flow: little differences Flow 'stalling': larger differences

Panel codes - the workhorse

UNIVERSITY

School of Engineering Science

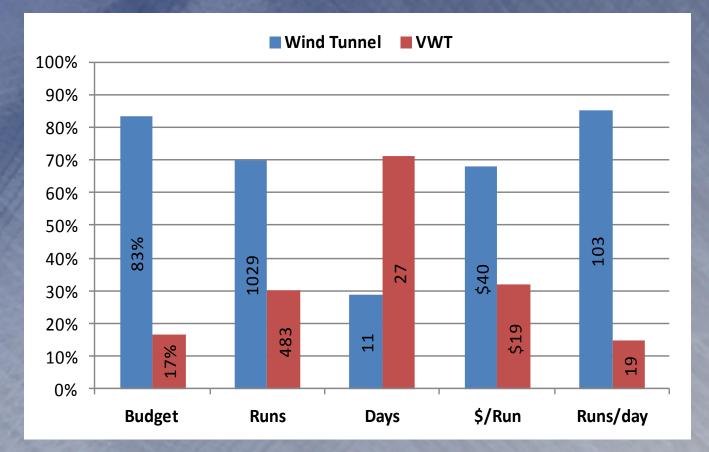
So

North Sails design tool

- RANS modelling
- Template recipe provided via desktop application
- Designer run, inputting geometry and key physical values (e.g. Boatspeed, Wind speed)
- Utilises Iridis3 supercomputer

North Sails design tool

project Casestudy Casestudy title 3sail_A designer Open control file C: \CFD \bubblebath\Casestudies\3sail\sail.vwt Boatspeed 11.92 kts TWS Heel 16.90 deg TWA 125.00 deg AWA 70.77 deg Leeway 1.60 deg TWA 125.00 m Dyn. Head 22.524 Pa Pitch 0.00 Density 1.224 kg/m³ Wind Gradient Sinkage 0.000 Density 1.224 kg/m³ Wind Gradient Genoa_centre Genoa_centre Superative Status Superative Status Superative Status Superative Status Superative Status Geometry control Staysail_centre BlockMesh control SnappyHexMesh control Superative Status Output Output Solver(s) Solver(s) Solver(s)	Bubblebath OpenFOAM pre-	-processor	
designer Open control file C:\\CFD\bubblebath\Casestudies\3sail\3sail.vwt Boatspeed 11.92 kts TWS 14.00 knts AWS 11.79 knts Heel 16.30 deg TWA 125.00 deg AWA 70.77 deg Leeway 1.60 deg Ref h 27.00 m Dyn. Head 22.524 Pa Pitch 0.00 Density 1.224 kg/m³ Wind Gradient Geometries Meshing Sinkage 0.000 2 Wind Gradient Genoa_centre Sinkage Geometry 0.stl Stl S			
Open control file C:\\CFD\bubblebath\Casestudies\3sail\3sail.vwt Boatspeed 11.92 kts TWS 14.00 knts AWS 11.79 knts Heel 16.90 deg TWA 125.00 deg AWA 70.77 deg Leeway 1.60 deg TWA 125.00 m Dyn. Head 22.524 Pa Pitch 0.00 Density 1.224 kg/m³ Wind Gradient Geometries Meshing geometry0.stl Staysail_edge Staysail_edge <td>title 3sail_A</td> <td></td> <td></td>	title 3sail_A		
Open control file Boatspeed 11.32 kts TWS 14.00 knts AWS 11.79 knts Heel 16.90 deg TWA 125.00 deg AWA 70.77 deg Leeway 1.60 deg Ref h 27.00 m Dyn. Head 22.524 Pa Pitch 0.00 Density 1.224 kg/m³ Wind Gradient Sinkage 0.000 Density 1.224 kg/m³ Wind Gradient Geometries Meshing GEOMETRY NAMES geometry0.stl E Main_edge Main_edge Surface indiges Genoa_centre: 5 to 6 Main_edge: 6 to 6 Main_edge: 6 to 6 Staysail_centre BlockMesh control SnappyHexMesh control Image: 6 to 6			
Heel 16.90 deg TWA 125.00 deg AWA 70.77 deg Leeway 1.60 deg Ref h 27.00 m Dyn. Head 22.524 Pa Pitch 0.00 Density 1.224 kg/m³ 2 Wind Gradient Geometries Meshing Genoa_edge Geometry control geometry0.stl SurFACE CONCENTRATIONS Main_edge Staysail_edge Staysail_edge Staysail_edge Staysail_edge Geometry control Geometry control BlockMesh control SnappyHexMesh control Output Solve by RANS Solver(s) Solver(s)	Open control file	CFD\bubblebath\Casestud	fies\3sail\3sail.vwt
Ineer Image: Second problem Awa in the second problem Leeway 1.60 deg Ref h 27.00 m Dyn. Head 22.524 Pa Pitch 0.00 Density 1.224 kg/m³ wind Gradient Sinkage 0.000 2 Wind Gradient Geometries Meshing Genoa_centre GEOMETRY NAMES Main_edge GEOMETRY NAMES Main_edge GEOMETRY NAMES Main_edge Supervised problem Main_edge Supervised problem Main_edge Supervised problem Main_edge Supervised problem Staysal_edge Staysal_edge Staysal_edge Staysal_edge Geometry control Second problem Image: Staysal_edge Staysal_edge Output SnappyHexMesh control Sample solution points Solve by RANS Output Output	Boatspeed 11.92 kts	TWS 14.00 knts	AWS 11.79 knts
Pitch 0.00 Sinkage Density 1.224 kg/m³ Sinkage 0.000 2 Wind Gradient Geometries Meshing Genoa_edge Genoa_centre Main_edge Main_edge Staysail_edge Meshing Staysail_edge Staysail_centre GEOMETRY NAMES geometry0.stl Image: Concentrations Geometry control Fatches Genoa_edge: 5 to 7 Genoa_centre: 5 to 6 Main_edge: 6 to 6 Image: Concentrol Output BlockMesh control SnappyHexMesh control Solver(s) Output Solver(s) Solver(s) Solver(s)	Heel 16.90 deg	TWA 125.00 deg	AWA 70.77 deg
Pitch L224 kg/m² Sinkage 0.000 2 Geometries Meshing Genoa_edge geometry0.stl Genoa_centre geometry0.stl Main_edge Staysail_edge Staysail_centre Geometry control Geometry control BlockMesh control Geometry control BlockMesh control Output SnappyHexMesh control Output Solver by RANS Output Solver(s)	Leeway 1.60 deg	Refh 27.00 m [Dyn. Head 22.524 Pa
Sinkage 0.000 2 Wind Gradient Geometries Meshing Genoa_edge Geometry NAMES Genoa_centre GEOMETRY NAMES Main_edge Geometry0.stl Main_edge SURFACE CONCENTRATIONS Geometry control Geona_edge: 5 to 7 Geometry control BlockMesh control Geometry control BlockMesh control Output SnappyHexMesh control Output Solver by RANS Output Solver(s)	Pitch 0.00	Density 1.224 kg/r	m ³
Genoa_edge GEOMETRY NAMES Genoa_edge geometry0.stl Main_edge SURFACE CONCENTRATIONS Staysail_centre SURFACE CONCENTRATIONS Staysail_centre Geometry0.stl Geometry control BiockMesh control Geometry control BlockMesh control Output SnappyHexMesh control Output Solver by RANS Output Solver(s)	0.000		Wind Gradient
Genoa_edge GEOMETRY NAMES Genoa_centre geometry0.stl Main_edge SURFACE CONCENTRATIONS Staysail_centre SURFACE CONCENTRATIONS Staysail_centre Geometry0.stl Geometry control BiockMesh control Geometry control BiockMesh control Output SnappyHexMesh control Output Solver by RANS Output Solver(s)			
Genoa_centre geometry0.stl Main_centre SURFACE CONCENTRATIONS Staysail_edge geometry0.stl: 3 to 3 Staysail_centre Patches Geometry control Genoa_centre: 5 to 6 Main_edge: 6 to 6 Main_edge: 6 to 6 Output BlockMesh control SnappyHexMesh control SnappyHexMesh control Solve by RANS Solver(s) Output Solver(s)	Geometries	Meshing	
Geometry control	Genoa_centre Main_edge Main_centre Staysail_edge	geometry0.st/ SURFACE CON geometry0.st/ Patches Genoa_edge Genoa_centr	NCENTRATIONS 1: 3 to 3 1: 5 to 7 1: 5 to 6
Cutput SnappyHexMesh control Cp surface images individual PLT files combined PLT file remove working dir Sample solution points Solve by RANS Output Solver(s)	Geometry control	Main_edge: 6	>00b
Output SnappyHexMesh control Cp surface images individual PLT files combined PLT file remove working dir Sample solution points Solve by RANS Output Solver(s)	ParaView	Block	Mesh control
Cp surface images individual PLT files combined PLT file remove working dir Sample solution points Solve by RANS Output Save control file Solver(s)		SnappyH	HexMesh control
Sample solution points	Cp surface images individual PLT files	SUIVE BY HAR	1
Save control file Create OpenFOAM Evit	remove working dir		Solver(s)
	Output		
	Save control file		Exit

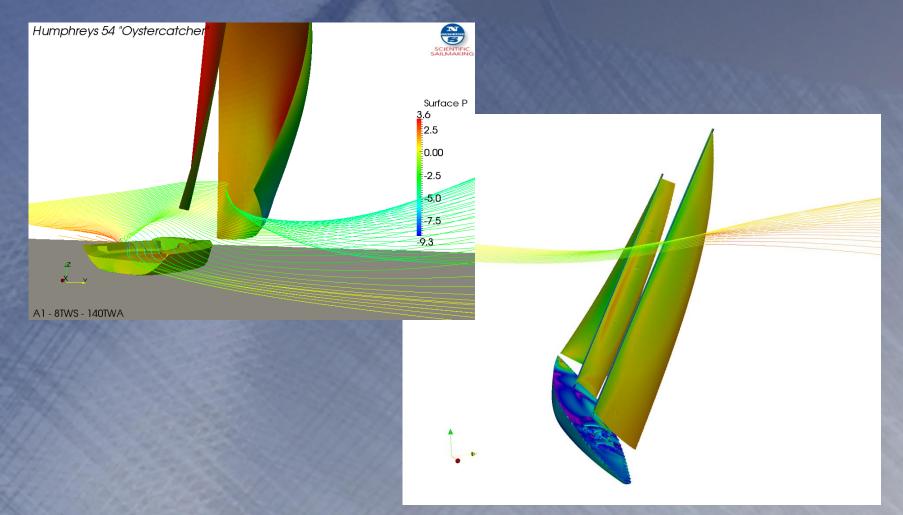


Southampton

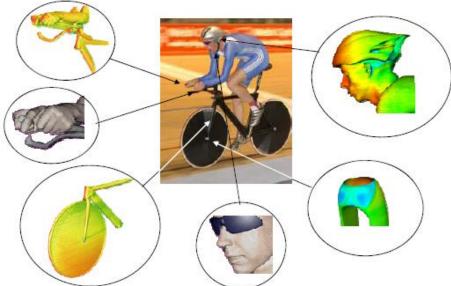
Aero R&D < 4% of total sail budget = G1 headsail.

Southampton School of Engineering Sciences

Real Win	d Tunnel	Virtual Wind Tunnel			
<u>Pro's</u>	<u>Con's</u>	<u>Pro's</u>	<u>Con's</u>		
High run rate	Outlier queries.	Cheaper per run	Low run rate		
Lots of tests/designs.	Expensive / Run	Worldwide 24/7	Aero Curves N/A		
Quick to right area	Travel.	Re-useable	No crew "feel"		
Aero curves.	No pressures.	Pressure map			
Crew "feel"	LAX customs				
Dynamic(ish)					



Sail wardrobe development

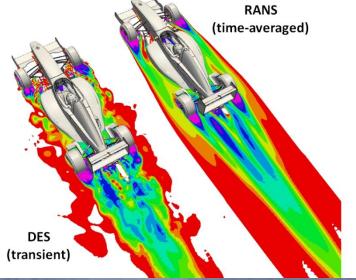


Track cycling

Beijing 2008 Wind tunnel testing (Wolfson) RANS modelling (Totalsim)

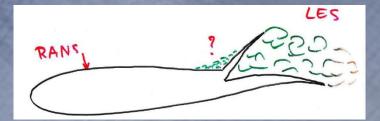
School of Engineer

Track cycling


Beijing 2008

- RANS modelling did not tally with wind tunnel results
- Bluff body flow ⇒ large zones of unsteady flow
- Averaged (RANS) models not adequate

 Key question/factor is time scale of turbulent motion containing energy compared to changes in the mean flow



What is DES ? Detached Eddy Simulation

Turbulence model switches to SGS in regions fine enough. Near wall is RANS Large Turbulent length scales is LES

i.e. hybrid, 'engineering' solutions

Spalart, "Reflections on RANS modelling", 3rd Symposium on Hybrid RANS -LES Methods, June '12

TECHNOLOGY AND INDUSTRIAL AERODYNAMICS

ring Sciences

DES – bluff body flows

Spalart, June-August 2012

School of Engineering Scienc

BOEING

Four Types of Bluff-Body Simulations

0.78

2D Unsteady RANS, C_d ~ 1.73

Experiment, C_d ~ 1.15-1.25

WOLFSON UNIT

Back to ... track cycling

- London 2012
- DES modelling
 - Captured trends of wind tunnel much better
 - Still no match for the wind tunnel !
 - Human = continual movement
 - Fabrics = wrinkles, rough & stretching
 - Athlete (i.e. client /end user) trust and buy in

WOLFSON UNIT

Why not use DES always?

• Code

- People & knowledge base
- Computational resources
 - Resources required
 - 48 processors, ≈48hrs per run (compared to 4-5 hrs for RANS)

Limits of computers - iPhone = Faster & more memory than 1995 Pentium desktop

- Iridis3 (2009)

- 8000 x 2.27GHz processors
- · 22 GB memory per node
- 75th in world when launched, 331st in Nov 12 (and that was after an additional 3000 processors added)

- Iridis4 (2013)

- 12000 CPUs (125%, and faster)
- · 32 GB of Memory per node (145%)
- storage with Parallel File System (385%)
- A number of nodes with 100's of GB per node

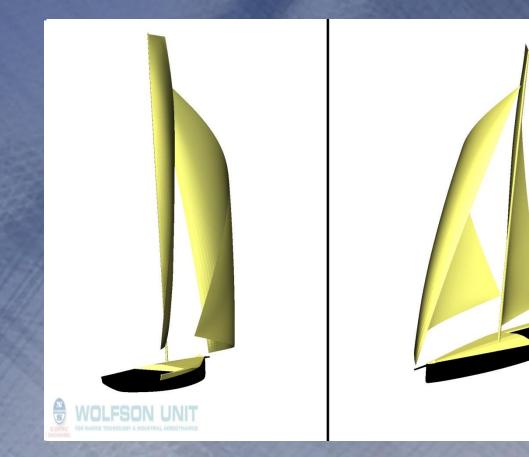
Resources - computers

Mainframenters

The "cloud"

Personal computers

School of Engineering Scien


- We know panel codes are good enough for non separated flow
- With 'some' separated flow, RANS is more accurate than panel
- Where does RANS start failing, and is DES required ?
 - Modern racing yachts & apparent wind

· Case study of Volvo 70 yacht - 9 knots TWS, 50 TWA - 11 knots TWS, 70 TWA - 15 knots TWS, 110 TWA - 17 knots TWS, 125 TWA • And a 'slower' 40ft yacht - 14 knots TWA, 147 TWA

School of Engineering Science

TW :50° AW: 23° TW :80° AW: 32° TW :110° AW: 42° TW :125° AW: 50°

TW :50° AW: 23°

UNIVERSITY

School of Engineering Sciences

TW :125° AW: 42°

• 125 TWA

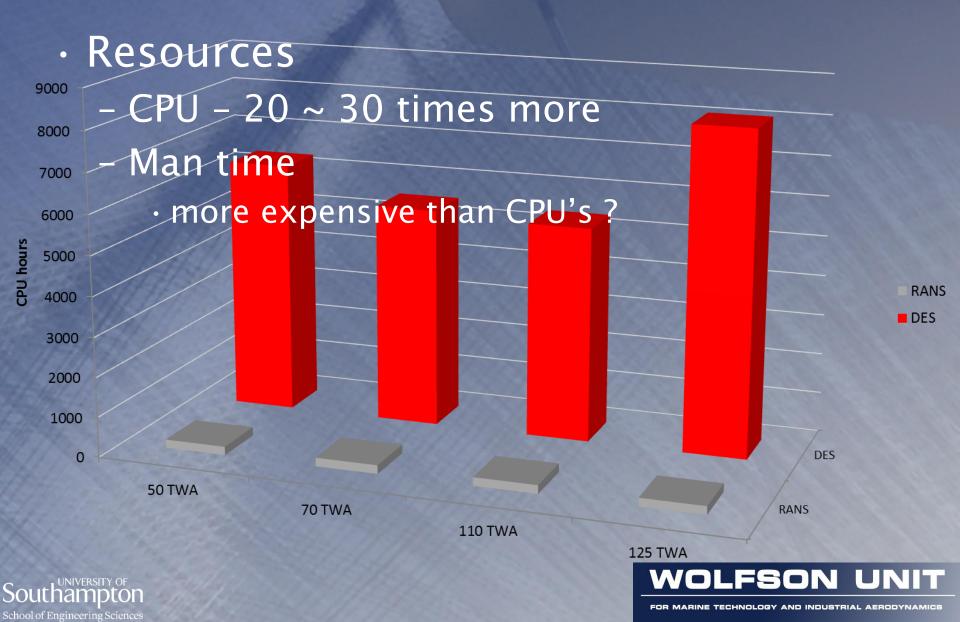
• 147 TWA

School of Engineering Sc

Forces

- % difference between RANS & DES

TWS	TWA	AWS	AWA	Fx	Fy	Fz
9	50	16	23	0%	0%	1%
11	80	19	32	0%	1%	1%
15	110	21	42	-3%	-1%	0%
17	125	18	50	3%	0%	2%
14	147	8	90	65%	31%	6%



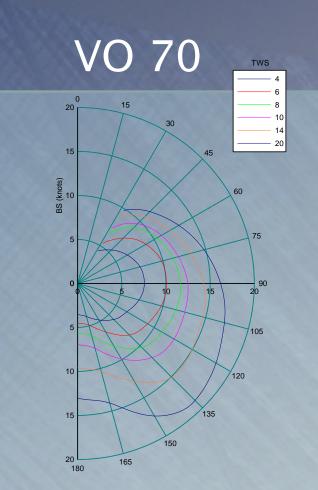
FOR MARINE TECHNOLOGY AND INDUSTRIAL AERODYNAMICS

School of Engineering Science

DES Modelling

Requirements

6000 CPU hrs @ 5p/hr
£300 per run


Probably 1 man day per run (meshing, control, post pro)

- VPP analysis
- IMS 40 TWS 20 г (knots) 10 SS

School of Engineering Science

VPP analysisIMS40

•	V	0	7	0	
---	---	---	---	---	--

	4	5	6	7	8	9	10	12	14	16	20
32	15.2	16.1	16.7	17	17.4	17.3	18.2	18.5	19	19.6	20.8
36	16.5	17.4	17.8	18.3	17.4	17.3	19.4	20	20.7	21.5	20.8
40	17.6	17.4	17.8	18.5	19.2	19.7	20.7	21.5	20.7	23.4	25.1
40	17.0	19.6	20	20.1	20.7	21.2	20.7	23.5	24.7	25.8	27.8
52	20.4	20.9	21.4	21.9	22.6	23.5	24.8	26.3	27.8	29.1	31.6
60	22	22.3	23.1	23.9	25	26.1	27.6	29.5	31.4	33	35.5
70	23.7	24.3	25.4	26.5	27.9	29.3	31.1	33.6	35.5	37.3	40.4
80	25.5	26.5	27.9	29	30.7	32.3	34.3	37.2	39.4	41.5	45
90	27.6	28.8	30	32.1	33.3	35.1	37.4	40.6	43.1	45.5	49.6
100	30.2	31.5	32.9	34.8	37.2	38.4	42	43.7	46.6	49.5	54.1
110	33.8	34.8	36.5	38.6	40.3	42.4	44.5	48.7	51.9	54.8	59.3
120	38.3	38.5	40	42	44.4	46.2	47.7	51.3	55.1	58.4	63.5
135	43.8	45.3	46.3	48.3	50.6	53	55.7	58.8	60.9	64.7	70.6
150	56.9	65.7	70.3	71.4	72.1	74.1	76	81.1	84.4	86	88.3
160	74.4	91.4	100.3	105	107	107.1	107.9	110.3	114	116.8	119
170	111	133.2	140.7	144.2	146	146.8	147	147.5	148.2	149.5	151
180	180	180	180	180	180	180	180	180	180	180	180
			1.29	L. L. M.	10000	12/2/18					
Up	18	19.5	20.4	19.8	19.7	20	21.4	21.5	21.5	22	23.3
Dn	49	48	49.3	53.9	55.8	61.1	65.6	68.1	71.1	74.8	80.6

Southampton School of Engineering Sciences

WOLFSON UNIT

As a result...

You probably need one of these to accurately model this

School of Engineering Sc.

As a result... But one of these to model this

So

School of Engineering Scien

Resources - people

In house v out sourcing

Expertise in types CFD

Expertise in application area

• Time is money

Resources

Pay off

Accuracy

Resources

- Code
- Computers
- People

UNIVERSITY O

Sou

Time

Conclusions

 Resources (software, computational etc.) are available

- Resources are economically viable on any size of project
- Engineering judgement
- Mixed economy
 - Including experimental testing !!

ECHNOLOGY AND INDUSTRIAL AERODYNAMICS

Questions

- What is the problem?
- Resources required v available ?
- Select accordingly

